PURPOSE: This datasheet serves as a reference guide for laboratorians, analytical chemists, and researchers focused on the detection of nitazene analogues using mass spectrometry.

OVERVIEW: Nitazene analogues (also known as 2-benzyl benzimidazoles) are a group of potent novel synthetic opioids. Various nitazene analogues, including etonitazene (the prototypical drug of this series), were initially developed as new medicines but never approved for therapeutic use. Beginning in 2019 with isotonitazene, new waves of nitazene analogues began appearing in the North American drug supply. Similar to the trajectory of other novel psychoactive substances (NPS) subclasses, new nitazene analogues appeared after the control of prior analogues and with minor structural modifications. This constant and cyclic emergence of new potent opioids continues to challenge forensic laboratories, especially as unknown or previously uncharacterized substances appear. Forensic laboratories and similar drug testing institutions commonly employ mass spectrometry techniques for the detection of substances in drug materials and biological specimens. Gas chromatography mass spectrometry (GC-MS) and various forms of high resolution mass spectrometry (HRMS) remain the most utilized instrumentation for non-targeted detection of drugs and NPS. Resources to aid in the identification and determination of specific NPS (e.g., nitazene analogues) are key to reducing lag times between detection and reporting. This datasheet can be used to help identify and differentiate specific nitazene analogues based on acquired mass spectral data.

FINDINGS: Prototypical nitazene analogues produce GC-MS base peaks of m/z 86 and HRMS fragment ions of 100.1126 Da. N-Desethyl variant nitazene analogues produce varying GC-MS base peaks (e.g., m/z 121, 135, 149) and HRMS fragment ions of 72.0813 Da. N-Pyrrolidino variant nitazene analogues produce GC-MS base peaks of m/z 84 and HRMS fragment ions of 98.0970 Da. Nitazene analogues with variations to only the 5-nitro group generally produce GC-MS base peaks of m/z 86 and HRMS fragment ions of 100.1126 Da, but with differing molecular ions (M.I.) and monoisotopic masses ([M+H]+) compared to prototypical nitazene analogues. Compounding variations or substitutions generally produce a mixture of the various fragment ions previously mentioned. Notably, meto- and eto- variant nitazene analogues commonly produce characteristic GC-MS ions of m/z 121 and m/z 135, respectively, which may aid in their differentiation.

NITAZENE ANALOGUE STRUCTURAL BACKBONE

$$R1$$
 $R2$
 $R3$

Structural Class	Drug Name	RI	R2	R3	R4	Х	Formula	M.I.	GC-MS Fragment Ions‡	[M+H]+	HRMS Fragment lons [‡]
Prototypical	Metonitazene	C ₂ H ₅	C ₂ H ₅	OCH₃	NO ₂	CH ₂	C ₂₁ H ₂₆ N ₄ O ₃	382	121, 86*, 77, 58, 43	383.2078	264.1203, 121.0624, 100.1105, 72.0797
	Etonitazene	C ₂ H ₅	C ₂ H ₅	OC ₂ H ₅	NO ₂	CH ₂	C ₂₂ H ₂₈ N ₄ O ₃	396	135, 107, 86*, 58, 43	397.2234	159.1168, 135.0804, 100.1116, 72.0809
	Isotonitazene	C ₂ H ₅	C ₂ H ₅	iso-OC ₃ H ₇	NO ₂	CH ₂	C ₂₃ H ₃₀ N ₄ O ₃	410	107, 86*, 58, 77, 43	411.2391	107.0486, 100.1109, 72.0809
	Protonitazene	C ₂ H ₅	C ₂ H ₅	OC ₃ H ₇	NO ₂	CH ₂	C ₂₃ H ₃₀ N ₄ O ₃	410	107, 86*, 58, 77, 43	411.2391	107.0496, 100.1120, 72.0810
	Butonitazene	C ₂ H ₅	C ₂ H ₅	OC ₄ H ₉	NO ₂	CH ₂	C ₂₄ H ₃₂ N ₄ O ₃	424	107, 86*, 58, 77, 43	425.2547	163.1104, 107.0470, 100.1117, 44.0486
N-Desethyls	N-Desethyl Metonitazene	Н	C ₂ H ₅	OCH₃	NO ₂	CH ₂	C ₁₉ H ₂₂ N ₄ O ₃	354	297, 121*, 77, 58, 43	355.1765	284.1038, 238.1106, 121.0647, 72.0803
	N-Desethyl Etonitazene	Н	C ₂ H ₅	OC ₂ H ₅	NO ₂	CH ₂	C ₂₀ H ₂₄ N ₄ O ₃	368	311, 135*, 107, 77, 58	369.1921	298.1195, 176.0454, 129.0545, 72.0807
	N-Desethyl Isotonitazene	Н	C ₂ H ₅	iso-OC₃H ₇	NO ₂	CH ₂	C ₂₁ H ₂₅ N ₃ O	382	325, 282, 149*, 107, 58	383.2078	312.1375, 107.0494, 72.0808, 44.0491
	N-Desethyl Protonitazene	Н	C ₂ H ₅	OC ₃ H ₇	NO ₂	CH ₂	C ₂₁ H ₂₅ N ₃ O	382	325, 282, 149*, 107, 58	383.2078	312.1375, 107.0494, 72.0802, 59.0475
<i>N</i> -Pyrrolidinos	N-Pyrrolidino Metonitazene	-C ₄ H ₈ -		OCH₃	NO ₂	CH ₂	C ₂₁ H ₂₄ N ₄ O ₃	380	121, 84*, 77, 55, 42	381.1921	121.0649, 98.0966, 56.0497
	N-Pyrrolidino Etonitazene	-C ₄ H ₈ -		OC ₂ H ₅	NO ₂	CH ₂	C ₂₂ H ₂₆ N ₄ O ₃	394	135, 107, 84*, 55, 42	395.2078	135.0800, 107.0508, 98.0958, 56.0493
	N-Pyrrolidino Isotonitazene	-C ₄ H ₈ -		iso-OC₃H ₇	NO ₂	CH ₂	C ₂₃ H ₂₈ N ₄ O ₃	408	107, 84*, 77, 55, 42	409.2234	107.0516, 98.0968, 46.0657
	N-Pyrrolidino Protonitazene	-C ₄ H ₈ -		OC ₃ H ₇	NO ₂	CH ₂	C ₂₃ H ₂₈ N ₄ O ₃	408	107, 84*, 77, 55, 42	409.2234	107.0516, 98.0956, 46.0657
Nitro Variants	Metodesnitazene	C ₂ H ₅	C ₂ H ₅	OCH₃	Н	CH ₂	C ₂₁ H ₂₇ N ₃ O	337	235, 121, 86*, 77, 58	338.2227	121.0640, 100.1113, 72.0806
	Etodesnitazene	C ₂ H ₅	C ₂ H ₅	OC ₂ H ₅	Н	CH ₂	C ₂₂ H ₂₉ N ₃ O	351	135, 107, 86*, 58, 42	352.2383	100.1129, 72.0831
	5-Methyl Etodesnitazene	C ₂ H ₅	C ₂ H ₅	OC ₂ H ₅	CH₃	CH ₂	C ₂₃ H ₃₁ N ₃ O	365	135, 107, 86*, 77, 58	366.2540	100.1116, 72.0808
	5-Amino Isotonitazene	C ₂ H ₅	C ₂ H ₅	iso-OC ₃ H ₇	NH ₂	CH ₂	C ₂₃ H ₃₂ N ₄ O	380	146, 107, 86*, 58, 43	381.2649	149.0591, 107.0483, 100.1127, 72.0808
	5-Cyano Isotodesnitazene	C ₂ H ₅	C ₂ H ₅	iso-OC₃H ₇	CN	CH ₂	C ₂₄ H ₃₀ N ₄ O	390	262, 107, 86*, 58, 43	391.2492	107.0491, 100.1121
Others	Flunitazene	C ₂ H ₅	C ₂ H ₅	F	NO ₂	CH ₂	C ₂₀ H ₂₃ FN ₄ O ₂	370	109, 86*, 58, 42	371.1878	109.0435, 100.1110, 72.0800
	Clonitazene	C ₂ H ₅	C ₂ H ₅	Cl	NO ₂	CH ₂	C ₂₀ H ₂₃ CIN ₄ O ₂	386	254, 125, 86*, 77, 58	387.1582	125.0140, 100.1112, 72.0799
	Methylenedioxynitazene	C ₂ H ₅	C ₂ H ₅	-O ₂ CH ₂ -	NO ₂	CH ₂	C ₂₁ H ₂₄ N ₄ O ₄	396	135, 86*, 76, 58, 42	397.1870	135.0443, 100.1121, 72.0809
	N-Piperidinyl Etonitazene	-C ₅ H ₁₀ -		OC ₂ H ₅	NO ₂	CH ₂	C ₂₃ H ₂₈ N ₄ O ₃	408	135, 107, 98*, 70, 55	409.2234	135.0821, 112.1112, 107.0496
	N-Pyrrolidino Fluetonitazene	-C ₄ H ₈ -		OC₂H4F	NO ₂	CH ₂	C ₂₂ H ₂₅ FN ₄ O ₃	412	153, 107, 84*, 55, 42	413.1983	107.0491, 98.0964
	Fluetonitazene	C ₂ H ₅	C ₂ H ₅	OC ₂ H ₄ F	NO ₂	CH ₂	C ₂₂ H ₂₇ FN ₄ O ₃	414	153, 107, 86*, 58, 42	415.2140	153.0714, 100.1119, 72.0812, 44.0499
	N-Pyrrolidino Ethylene Isotonitazene	-C4	.H ₈ -	iso-OC ₃ H ₇	NO ₂	C ₂ H ₄	C ₂₄ H ₃₀ N ₄ O ₃	422	250, 107, 84*, 55, 42	423.2391	107.0488, 98.0959, 69.0699

Key: M.I. = Molecular Ion, * = Base Peak, [M+H]+ = Protonated Molecular Ion, * = Experimental Data

ACKNOWLEDGEMENTS: This report was prepared by Alex J. Krotulski, Sara E. Walton, FUNDING: CFSRE's NPS Discovery is supported by the National Institute of Justice, Office Joshua S. DeBord, Brianna N. Stang, Max T. Denn, and Barry K. Logan, CFSRE's NPS Discovery program acknowledges scientists at the CFSRE, NMS Labs, and many other COAP, "Novel Psychoactive Substance Discovery, Education, and Reporting Institute"). The collaborating agencies for their involvements and contributions. For more information opinions, findings, conclusions and/or recommendations expressed in this publication are about our programs and reports, please contact NPS Discovery at npsdiscovery@cfsre.org or visit our website at www.npsdiscovery.org.

of Justice Programs, U.S. Department of Justice (Award Number 15PNIJ-24-GK-00981those of the author(s) and do not necessarily represent the official position or policies of the U.S. Department of Justice.