

alpha-PCYP

Sample Type: Seized Material

Latest Revision: May 27, 2020

Date Received: March 3, 2019

Date of Report: May 27, 2020

1. GENERAL INFORMATION

IUPAC Name: 2-cyclohexyl-1-phenyl-2-pyrrolidin-1-yl-ethanone

InChI String: InChI=1S/C18H25NO/c20-18(16-11-5-2-6-12-16)17(19-13-7-8-

14-19)15-9-3-1-4-10-15/h2,5-6,11-12,15,17H,1,3-4,7-10,13-14H2

CFR: Not Scheduled (05/2020)

CAS# 1803168-16-2

Synonyms: α -PCYP, alpha-Pyrrolidinocyclohexylphenone, alpha-

Pyrrolidinocyclohexanophenone

Source: Department of Homeland Security

Appearance: White Solid Material

Important Note: All identifications were made based on evaluation of analytical data (GC-MS, LC-QTOF-MS, and NMR).

Prepared By: Alex J. Krotulski, PhD, Melissa F. Fogarty, MSFS, D-ABFT-FT, and Barry K. Logan, PhD, F-ABFT

2. CHEMICAL AND PHYSICAL DATA

2.1 CHEMICAL DATA

Form	Chemical Formula	Molecular Weight	Molecular Ion [M ⁺]	Exact Mass [M+H] ⁺
Base	$C_{18}H_{25}NO$	271.4	271	272.2009

3. BRIEF DESCRIPTION

Alpha-PCYP is classified as a novel stimulant and substituted cathinone. Substituted cathinones are modified based on the structure of cathinone, an alkaloid found in the Khat plant. Novel stimulants have been reported to cause stimulant-like effects, similar to amphetamines. Novel stimulants have also caused adverse events, including deaths, as described in the literature. Structurally similar compounds include alpha-pyrrolidinopentiophenone (alpha-PVP), alpha-pyrrolidinobutiophenone (alpha-PBP), alpha-pyrrolidinohexanophenone (alpha-PHP), and alpha-pyrrolidinoisohexanophenone (alpha-PiHP). Alpha-PVP, alpha-PHP, and alpha-PBP are Schedule I substances in the United States; alpha-PCYP is not explicitly scheduled. The potency of alpha-PCYP was previously studied alongside similar pyrrolidine cathinone analogues, in which alpha-PCYP was found to be twice as potent as alpha-PVP.

4. ADDITIONAL RESOURCES

1. Kolanos R, Sakloth F, Jain AD, Partilla JS, Baumann MH, Glennon RA. (2015) "Structural Modification of the Designer Stimulant α-Pyrrolidinovalerophenone (α-PVP) Influences Potency at Dopamine Transporters". *ACS Chemical Neuroscience*. **6** (10): 1726–31.

https://www.caymanchem.com/product/30241/%CE%B1-pyrrolidinocyclohexanophenone-(hydrochloride)

5. QUALITATIVE DATA

5.1 GAS CHROMATOGRAPHY MASS SPECTROMETRY (GC-MS)

Testing Performed At: NMS Labs (Willow Grove, PA)

Sample Preparation: Acid/Base extraction

Instrument: Agilent 5975 Series GC/MSD System

Column: ZebronTM InfernoTM ZB-35HT (15 m x 250 μ m x 0.25 μ m)

Carrier Gas: Helium (Flow: 1 mL/min)

Temperatures: Injection Port: 265 °C

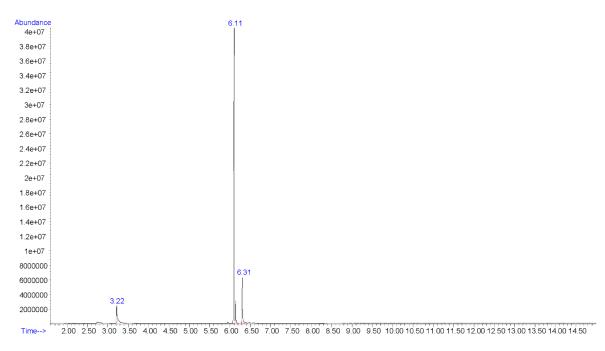
Transfer Line: 300 °C

MS Source: 230 °C

MS Quad: 150 °C

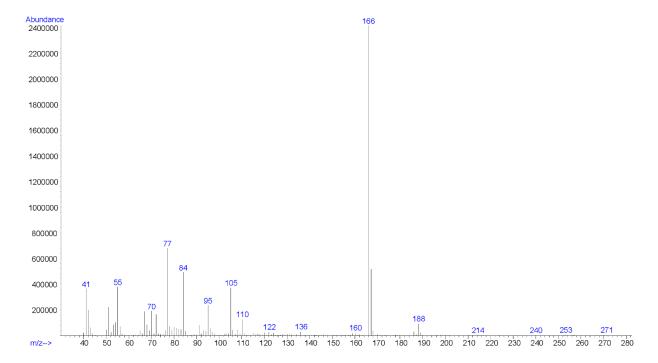
Oven Program: 60 °C for 0.5 min, 35 °C/min to 340 °C for 6.5 min

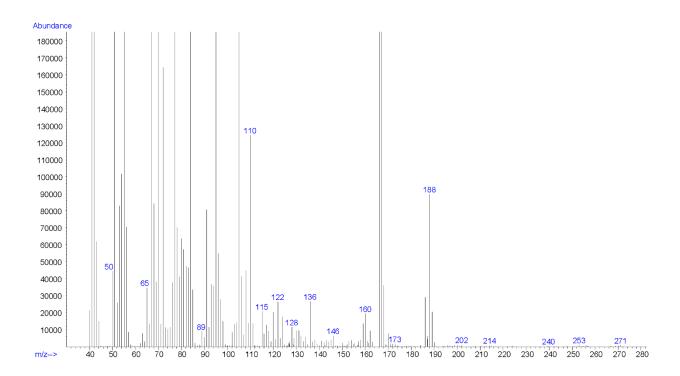
Injection Parameters: Injection Type: Splitless


Injection Volume: 1 µL

MS Parameters: Mass Scan Range: 40-550 m/z

Threshold: 250


Retention Time: 6.11 min


Chromatogram: Alpha-PCYP

Additional peaks present in chromatogram: internal standard (3.22 min) and internal standard (6.31 min)

EI (70 eV) Mass Spectrum (Top) and 10x (Bottom): Alpha-PCYP

5.2 LIQUID CHROMATOGRAPHY QUADRUPOLE TIME OF FLIGHT MASS SPECTROMETRY (LC-QTOF)

Testing Performed At: The Center for Forensic Science Research and Education at the

Fredric Rieders Family Foundation (Willow Grove, PA)

Sample Preparation: 1:100 dilution of acid/base extract in mobile phase

Instrument: Sciex TripleTOF® 5600+, Shimadzu Nexera XR UHPLC

Column: Phenomenex® Kinetex C18 (50 mm x 3.0 mm, 2.6 μm)

Mobile Phase: A: Ammonium formate (10 mM, pH 3.0)

B: Methanol/acetonitrile (50:50)

Flow rate: 0.4 mL/min

Gradient: Initial: 95A:5B; 5A:95B over 13 min; 95A:5B at 15.5 min

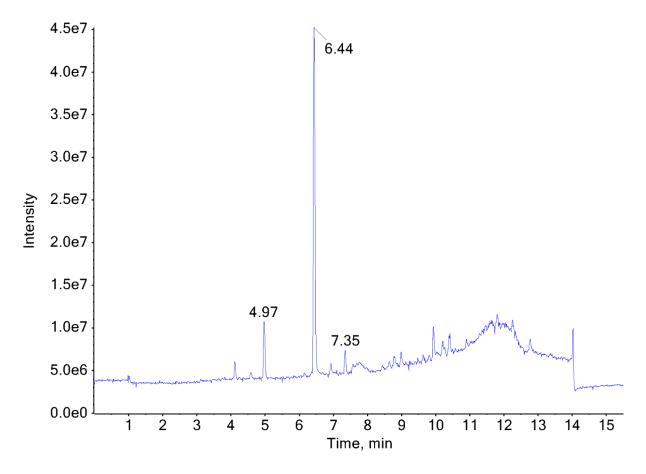
Temperatures: Autosampler: 15 °C

Column Oven: 30 °C

Source Heater: 600 °C

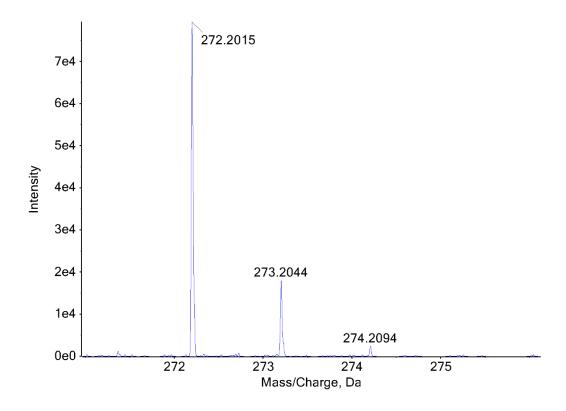
Injection Parameters: Injection Volume: 10 µL

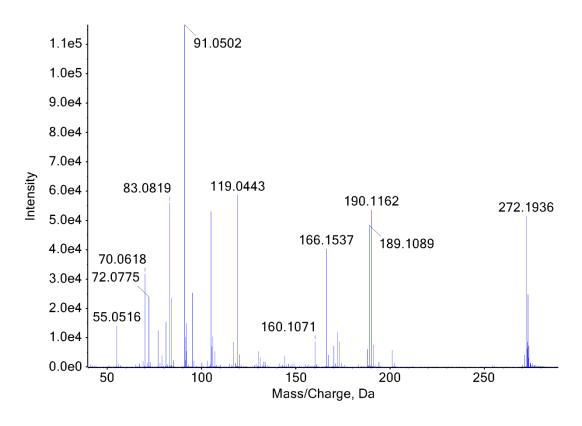
QTOF Parameters: TOF MS Scan Range: 100-510 Da


Precursor Isolation: SWATH® acquisition (27 windows)

Fragmentation: Collison Energy Spread (35±15 eV)

MS/MS Scan Range: 50-510 Da


Retention Time: 6.44 min


Chromatogram: Alpha-PCYP

Additional peaks present in chromatogram: internal standards (4.97 min and 7.35 min)

TOF MS (Top) and MS/MS (Bottom) Spectra: Alpha-PCYP

5.3 NUCLEAR MAGNETIC RESONANCE (NMR)

Testing Performed At: IteraMedTM (Doylestown, PA)

Sample Preparation: Powder dissolved in CDCl₃

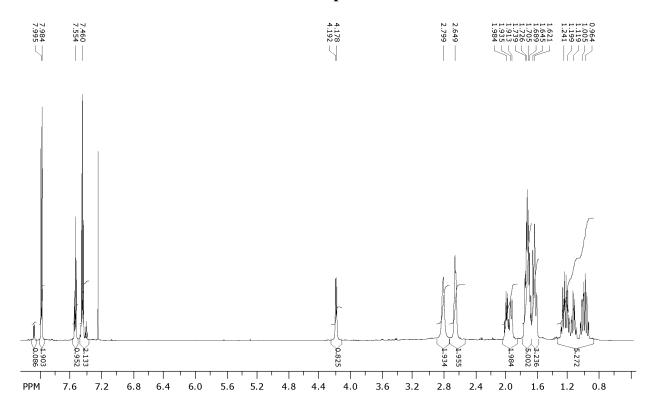
Instrument: 600 MHz Bruker AVANCETM III Spectrometer

Parameters: Pulse Sequence: Proton

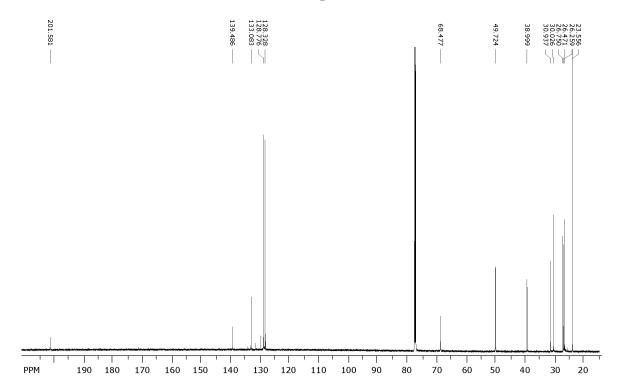
Solvent: CDCl₃

Spectral Width: 12019.23 Hz = 20.0276 ppm = 0.183399 Hz/pt for

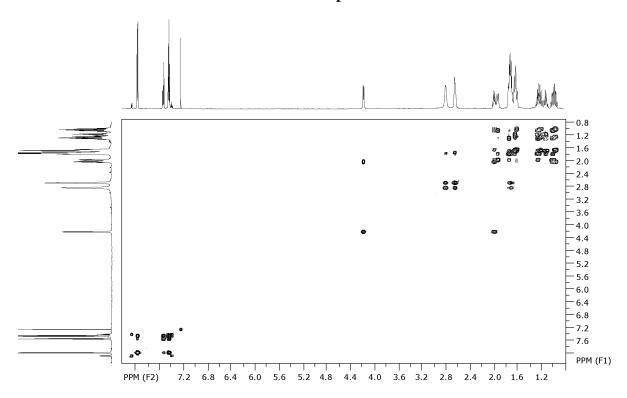
¹H; 36231.88 Hz = 240.0768 ppm = 0.552855 Hz/pt for ¹³C; 5980.86 Hz = 9.9659 ppm = 2.9203 Hz/pt for COSY; 5980.86 Hz = 9.9659 ppm = 2.9203 Hz/pt for HSQC; 5980.86 Hz = 9.9659


ppm = 1.9469 Hz/pt for HSQC

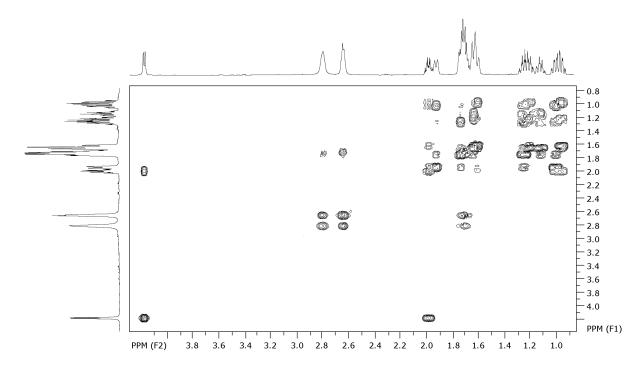
Number of Scans: 16 for ¹H; 256 for ¹³C; 2 for COSY; 4 for


HSQC; 10 for HMBC

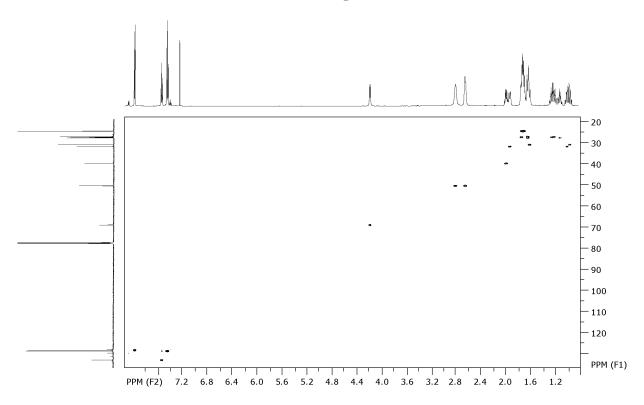
Delay Between Pulses: 1.000 second for ¹H, 2.000 seconds for ¹³C


¹H NMR: Alpha-PCYP

¹³C NMR: Alpha-PCYP

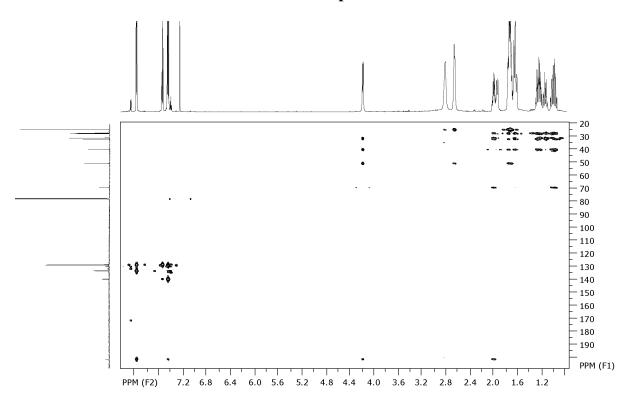


COSY NMR: Alpha-PCYP



Page 9 of 11

COSY NMR (Zoom): Alpha-PCYP



HSQC NMR: Alpha-PCYP

Page 10 of 11

HMBC NMR: Alpha-PCYP

