

MDMB-4en-PINACA

Sample Type: Biological Fluid

Latest Revision: September 12, 2019

Date of Report: September 12, 2019

1. GENERAL INFORMATION

IUPAC Name:	Methyl 3,3-dimethyl-2-[(1-pent-4-enylindazole-3- carbonyl)amino]butanoate
InChI String:	InChI=1S/C20H27N3O3/c1-6-7-10-13-23-15-12-9-8-11- 14(15)16(22-23)18(24)21-17(19(25)26-5)20(2,3)4/h6,8-9,11- 12,17H,1,7,10,13H2,2-5H3,(H,21,24)
CFR:	Not Scheduled (09/2019)
CAS#	Not Available
Synonyms:	MDMB-PENINACA, MDMB-PINACA N1-pentyl-4-en isomer, 5-CL-ADB-A
Source:	NMS Labs – Toxicology Department

Important Note: All identifications were made based on evaluation of analytical data (*LC-QTOF*) in comparison to analysis of acquired reference material.

Prepared By: Alex J. Krotulski, MSFS, Amanda L.A. Mohr, MSFS, D-ABFT-FT, and Barry K. Logan, PhD, F-ABFT

2. CHEMICAL AND PHYSICAL DATA

2.1 CHEMICAL DATA

Form	Chemical	Molecular	Molecular Ion	Exact Mass
	Formula	Weight	[M ⁺]	[M+H] ⁺
Base	$C_{20}H_{27}N_3O_3$	357.5	357	358.2125

3. BRIEF DESCRIPTION

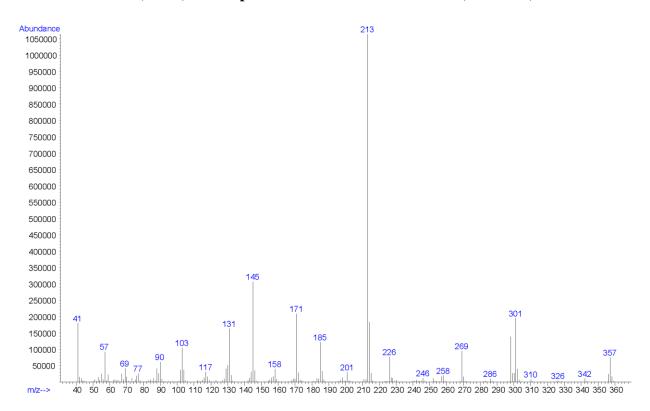
MDMB-4en-PINACA is classified as a synthetic cannabinoid. Synthetic cannabinoids have been reported to cause psychoactive effects similar to delta-9-tetrahydrocannabinol (THC). Synthetic cannabinoids have caused adverse events, including deaths, as described in the literature. 5F-MDMB-PINACA (5F-ADB) is a structurally similar synthetic cannabinoid and scheduled substance in the United States; MDMB-4en-PINACA is not explicitly scheduled.

4. SAMPLE HISTORY

MDMB-4en-PINACA has been identified in two cases since the end of July 2019. The geographical and demographical breakdown is below:

Geographical Location:	Indiana (n=2)	
Case Type:	Postmortem Investigation (n=2)	
Biological Sample:	Blood (n=2)	
Date of First Collection:	July 21, 2019	
Date of First Receipt:	July 23, 2019	
Additional Cannabinoids:	5F-MDMB-PICA (n=1)	

5. ADDITIONAL RESOURCES

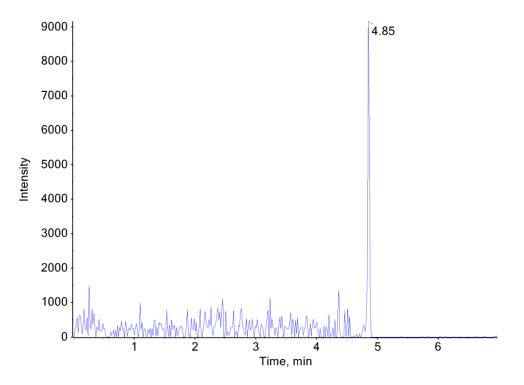

https://www.caymanchem.com/product/26097/mdmb-4en-pinaca

https://www.policija.si/apps/nfl_response_web/0_Analytical_Reports_final/MDMB-4en-PINACA%20(MDMB-PINACA%20N1-pentyl-4-en%20isomer)-ID-1951-18%20_report.pdf

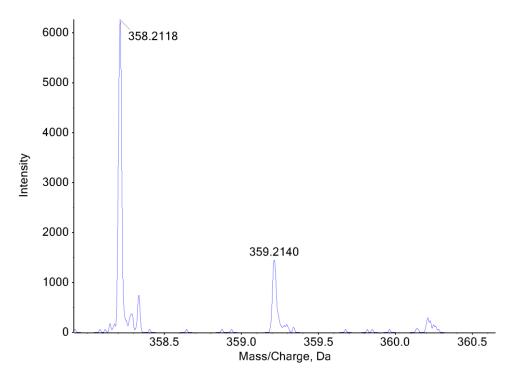
6. QUALITATIVE DATA

6.1 GAS CHROMATOGRAPHY MASS SPECTROMETRY (GC-MS)

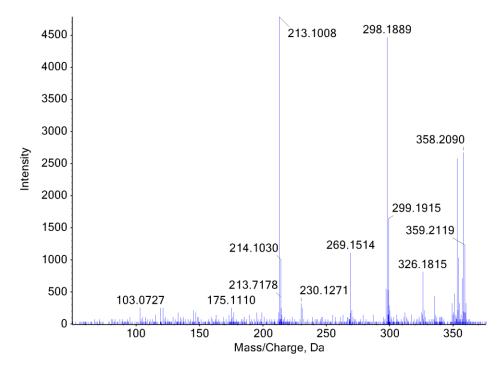
Testing Performed At:	The Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation (Willow Grove, PA)
Sample Preparation:	Standard diluted in methanol
Instrument:	Agilent 5975 Series GC/MSD System
Standard:	Reference material for MDMB-4en-PINACA (Batch: 0540771-6) was purchased from Cayman Chemical (Ann Arbor, MI, USA). (https://www.caymanchem.com/product/26097/mdmb-4en-pinaca)



EI (70 eV) Mass Spectrum: MDMB-4en-PINACA (Standard)


6.2 LIQUID CHROMATOGRAPHY QUADRUPOLE TIME OF FLIGHT MASS SPECTROMETRY (LC-QTOF)

Testing Performed At:	The Center for Forensic Science Research and Education at the Fredric Rieders Family Foundation (Willow Grove, PA)
Sample Preparation:	No additional preparation - direct analysis of sample extract
Instrument:	Sciex TripleTOF® 5600+, Shimadzu Nexera XR UHPLC
Column:	Phenomenex® Kinetex C18 (50 mm x 3.0 mm, 2.6 µm)
Mobile Phase:	A: Ammonium formate (10 mM, pH 3.0)
	B: Methanol/acetonitrile (50:50) with 0.1% formic acid
	Flow rate: 0.5 mL/min
Gradient:	Initial: 95A:5B; 5A:95B over 4 min, hold 2 min; 95A:5B at 7 min
Temperatures:	Autosampler: 15 °C
	Column Oven: 30 °C
	Source Heater: 600 °C
Injection Parameters:	Injection Volume: 20 µL
QTOF Parameters:	TOF MS Scan Range: 100-550 Da
	Precursor Isolation: SWATH® acquisition (10-25 Da)
	Fragmentation: Collison Energy Spread (35±15 eV)
	MS/MS Scan Range: 50-550 Da
Retention Time:	4.85 min
Standard Comparison:	Reference material for MDMB-4en-PINACA (Batch: 0540771-6) was purchased from Cayman Chemical (Ann Arbor, MI, USA). Analysis of this standard resulted in positive identification of the analyte in the exhibit as MDMB-4en-PINACA, based on retention time (4.90 min) and mass spectral data. (https://www.caymanchem.com/product/26097/mdmb-4en-pinaca)


Extracted Ion Chromatogram: MDMB-4en-PINACA (Blood Extract)

TOF MS Spectrum: MDMB-4en-PINACA (Blood Extract)

MS/MS Spectrum: MDMB-4en-PINACA (Blood Extract)

7. FUNDING

This project was supported by Award Number 2017-R2-CX-0021, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect those of the Department of Justice.