

2',5'-Dimethoxyfentanyl

Sample Type: Seized Material

Latest Revision: April 30, 2019

Date Received: March 25, 2019

Date of Report: April 30, 2019

1. GENERAL INFORMATION

IUPAC Name: N-[1-[2-(2,5-dimethoxyphenyl)ethyl]-4-piperidyl]-N-phenyl-

propanamide

InChI String: InChI=1S/C24H32N2O3/c1-4-24(27)26(20-8-6-5-7-9-20)21-13-

16-25(17-14-21)15-12-19-18-22(28-2)10-11-23(19)29-3/h5-

11,18,21H,4,12-17H2,1-3H3

CFR: 21 CFR 1308: Temporary Placement of Fentanyl-Related

Substances in Schedule 1 (02/06/2018)

CAS# Not Available

Synonyms: 2',5'-Dimethoxy Fentanyl, 2,5-Dimethoxyfentanyl,

Dimethoxy fentanyl

Source: Department of Homeland Security

Appearance: White Solid Material

Important Note: All identifications were made based on evaluation of analytical data (GC-MS, LC-QTOF, and NMR), as no standard reference material was available at the time of testing.

Prepared By: Alex J. Krotulski, MSFS, Melissa F. Fogarty, MSFS, D-ABFT-FT, and Barry K. Logan, PhD, F-ABFT

2. CHEMICAL AND PHYSICAL DATA

2.1 CHEMICAL DATA

Form	Chemical	Molecular	Molecular Ion	Exact Mass
	Formula	Weight	[M ⁺]	[M+H] ⁺
Base	$C_{24}H_{32}N_2O_3$	396.5	396	397.2486

3. BRIEF DESCRIPTION

2',5'-Dimethoxyfentanyl is classified as a fentanyl analogue and novel opioid. Fentanyl analogues are modified based on the structure of fentanyl. Fentanyl analogues have been reported to cause psychoactive effects, similar to fentanyl and other opioids. Fentanyl analogues have also caused adverse events, including deaths, as described in the literature. Structurally similar compounds include fentanyl and other fentanyl analogues. 2',5'-Dimethoxyfentanyl is not explicitly scheduled by name, but recent legislation has temporarily placed all fentanyl-related substances in Schedule I.

4. ADDITIONAL RESOURCES

No additional resources are available at this time.

5. QUALITATIVE DATA

5.1 GAS CHROMATOGRAPHY MASS SPECTROMETRY (GC-MS)

Testing Performed At: NMS Labs (Willow Grove, PA)

Sample Preparation: Acid/Base extraction

Instrument: Agilent 5975 Series GC/MSD System

Column: ZebronTM InfernoTM ZB-35HT (15 m x 250 μ m x 0.25 μ m)

Carrier Gas: Helium (Flow: 1 mL/min)

Temperatures: Injection Port: 265 °C

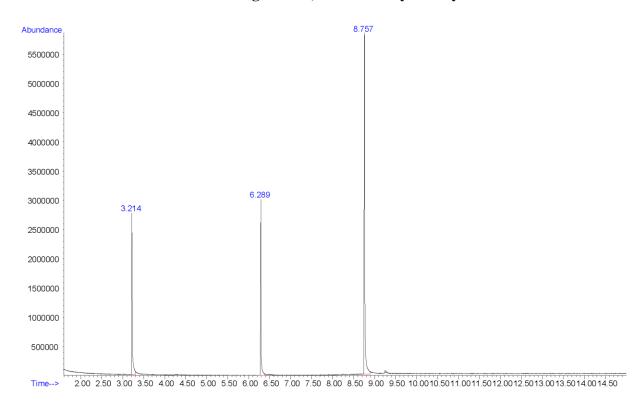
Transfer Line: 300 °C

MS Source: 230 °C

MS Quad: 150 °C

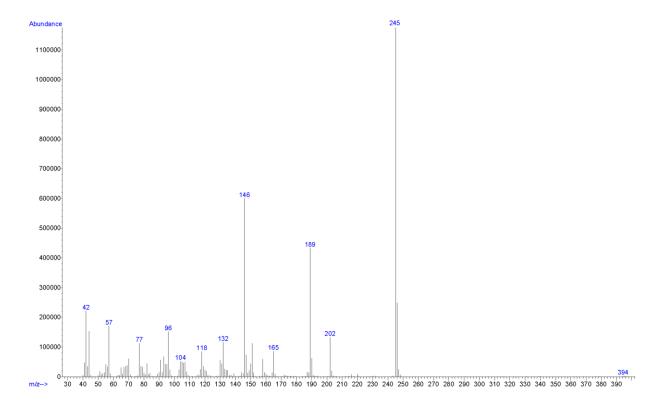
Oven Program: 60 °C for 0.5 min, 35 °C/min to 340 °C for 6.5 min

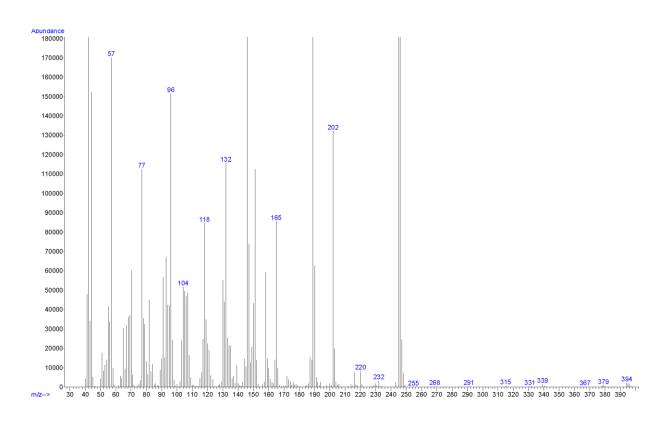
Injection Parameters: Injection Type: Splitless


Injection Volume: 1 µL

MS Parameters: Mass Scan Range: 40-550 m/z

Threshold: 250


Retention Time: 8.757 min


Chromatogram: 2',5'-Dimethoxyfentanyl

Additional peaks present in chromatogram: internal standards (3.214 min and 6.289 min)

EI (70 eV) Mass Spectrum (Top) and 10x (Bottom): 2',5'-Dimethoxyfentanyl

5.2 LIQUID CHROMATOGRAPHY QUADRUPOLE TIME OF FLIGHT MASS SPECTROMETRY (LC-QTOF)

Testing Performed At: The Center for Forensic Science Research and Education at the

Fredric Rieders Family Foundation (Willow Grove, PA)

Sample Preparation: 1:100 dilution of acid/base extract in mobile phase

Instrument: Sciex TripleTOF® 5600+, Shimadzu Nexera XR UHPLC

Column: Phenomenex® Kinetex C18 (50 mm x 3.0 mm, 2.6 μm)

Mobile Phase: A: Ammonium formate (10 mM, pH 3.0)

B: Methanol/acetonitrile (50:50)

Flow rate: 0.4 mL/min

Gradient: Initial: 95A:5B; 5A:95B over 13 min; 95A:5B at 15.5 min

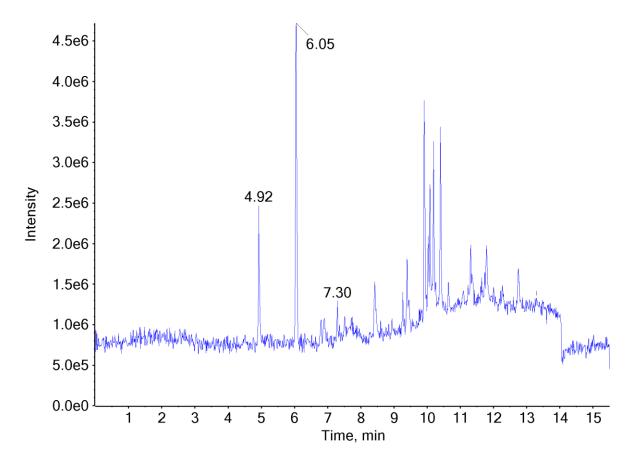
Temperatures: Autosampler: 15 °C

Column Oven: 30 °C

Source Heater: 600 °C

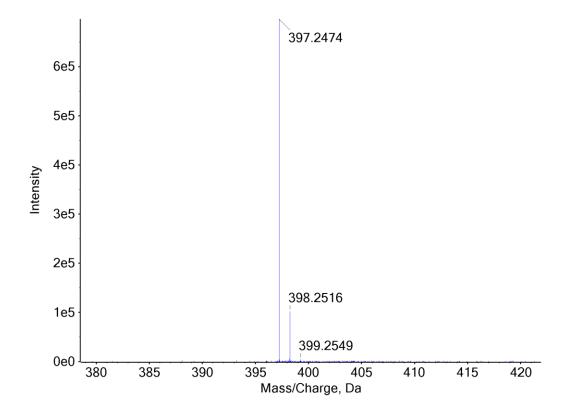
Injection Parameters: Injection Volume: 10 μL

QTOF Parameters: TOF MS Scan Range: 100-510 Da


Precursor Isolation: SWATH® acquisition (27 windows)

Fragmentation: Collison Energy Spread (35±15 eV)

MS/MS Scan Range: 50-510 Da


Retention Time: 6.05 min


Chromatogram: 2',5'-Dimethoxyfentanyl

Additional peaks present in chromatogram: internal standards (4.92 min and 7.30 min)

TOF MS (Top) and MS/MS (Bottom) Spectra: 2',5'-Dimethoxyfentanyl

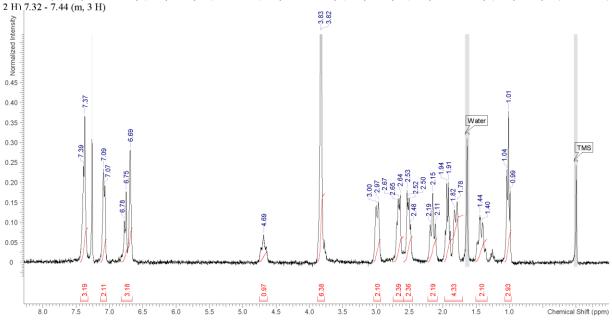
5.3 NUCLEAR MAGNETIC RESONANCE (NMR)

Testing Performed At: IteraMedTM (Doylestown, PA)

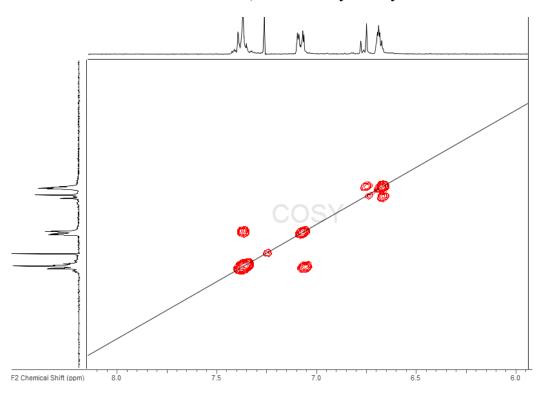
Sample Preparation: Dilute powder in CDCl₃

Instrument: 300 MHz INOVA VARIAN Spectrometer

Parameters: Pulse Sequence: Proton


Solvent: CDCl₃

Spectral Width: 4798.5 Hz for 1D (-2 – 14 ppm) and 3773.6 for 2D


Delay between pulses: 1st delay, d1 = 1.000

¹H NMR: 2',5'-Dimethoxyfentanyl

 $^{1}\text{H NMR (300 MHz, CHLOROFORM-}\textit{d)} \delta \text{ ppm } 0.97 - 1.07 \text{ (m, 3 H) } 1.42 \text{ (br d, }\textit{J} = 12.30 \text{ Hz, 2 H) } 1.70 - 1.97 \text{ (m, 4 H) } 2.15 \text{ (br t, }\textit{J} = 11.72 \text{ Hz, 2 H) } 2.45 - 2.59 \text{ (m, 2 H) } 2.59 - 2.74 \text{ (m, 3 H) } 2.98 \text{ (br d, }\textit{J} = 9.96 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br s, 1 H) } 6.66 - 6.82 \text{ (m, 3 H) } 7.08 \text{ (br d, }\textit{J} = 5.86 \text{ Hz, 2 H) } 2.75 - 2.75 \text{ (m, 2 H) } 2.59 - 2.74 \text{ (m, 3 H) } 2.98 \text{ (br d, }\textit{J} = 9.96 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br s, 1 H) } 6.66 - 6.82 \text{ (m, 3 H) } 7.08 \text{ (br d, }\textit{J} = 5.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br s, 1 H) } 6.66 - 6.82 \text{ (m, 3 H) } 7.08 \text{ (br d, }\textit{J} = 5.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br s, 1 H) } 6.66 - 6.82 \text{ (m, 3 H) } 7.08 \text{ (br d, }\textit{J} = 5.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br s, 1 H) } 6.66 - 6.82 \text{ (m, 3 H) } 7.08 \text{ (br d, }\textit{J} = 5.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.77 - 3.88 \text{ (m, 6 H) } 4.69 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.78 + 3.88 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 H) } 3.78 + 3.88 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 Hz, 2 H) } 3.88 + 3.88 \text{ (br d, }\textit{J} = 1.86 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 Hz, 2 H) } 3.88 + 3.88 \text{ (br d, }\textit{J} = 1.86 \text{ (br d, }\textit{J} = 1.86 \text{ Hz, 2 Hz, 2 H) } 3.88 + 3.88 \text{ (br d, }\textit{J} = 1.86 \text{ (br d, }\textit{J} = 1$

COSY NMR: 2',5'-Dimethoxyfentanyl

