A Metabolic Profile Determination of 2F-Viminol, A Novel Synthetic Opioid (NSO) Identified in Forensic Investigations

Aracelis A. Velez, B.S. Alex J. Krotulski, PhD; Donna M. Papsun, MS; Karen S. Scott, PhD

— FORENSIC SCIENCE PROGRAM —

Viminol

© Arcadia University. All Rights Reserved.

- Marketed as Dividol[®] in Italy and Brazil
- ~5.5x more potent than morphine
- Has shown little liability for development of dependence
- Racemic mixture of 6 different stereoisomers
 - $\circ~1S\text{-}(R,R)\text{-}disecbutyl isomer is a <math display="inline">\mu\text{-}opioid$ full agonist
 - 1S-(S,S)-disecbutyl isomer is an antagonist
- Structurally different from other opioids
- Not FDA approved or scheduled in the US

2F-Viminol

© Arcadia University. All Rights Reserved.

- Fluorine replaces Viminol's chlorine
 - Considerable stability of the C-F bond
 - Increased lipophilicity
- Classified as a novel opioid
- No literature available

F

2F-Viminol Structure

- No pharmacokinetic studies
- 2 cases identified at CFSRE
 - One seized powder
 - One pending toxicological sample

2

OH

2F-Viminol 3D model

Aims & Objectives

© Arcadia University. All Rights Reserved.

- Primary goal: To incubate and elucidate the major and minor metabolites of 2F-viminol
- Achieved by:

Incubating 2F-viminol in vitro with human liver microsomes (HLMs)

Analyzing the metabolite mixtures via LC-QTOF-MS

Using Metabolite Pilot software to identify metabolites and to elucidate their structures

Methods: Sample Prep

© Arcadia University. All Rights Reserved.

- Phosphate buffer: pH 7.4
- Pooled HLMs
 - Vesicles of the hepatocyte endoplasmic reticulum containing a variety of enzymes
 - 50 donor, mixed gender
 - Requires addition of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) for catalytic activation of enzymes
- Diazepam was used as a control drug

Sample ID	Phosphate Buffer (µL)	Drug (µL)	NADPH (µL)	HLM (µL)
Standard	595	5	0	0
Control	570	5	0	25
Reaction Mixture	520	5	50	25
Reaction Mixture	520	5	50	25

Methods: Incubations

© Arcadia University. All Rights Reserved.

Incubate samples at 37°C with agitation for 2hrs

Stop reaction by adding 500 μ L ACN

Centrifuge at 10,000 rpm to separate microsomes and cellular material

Partial dry-down of supernatant

Transfer to autosampler vials for LC-QTOF-MS analysis

6

5

ADIA UNIVERSITY

— FORENSIC SCIENCE PROGRAM —

A

Results

ID	Biotransformation	RT (min)	Formula	[M+H]+	Error (ppm)	Product Ions
Parent	2F-Viminol	7.15	$C_{21}H_{31}FN_2O$	347.2497	1.2	109.0439 142.1581 174.0704 273.1762
M1	Loss of C_7H_5F	4.72	$C_{14}H_{26}N_2O$	239.2120	1.1	142.193 172.1700
M2	N-dealkylation (sec- butyl)	6.36	$C_{17}H_{23}FN_2O$	291.1872	1.7	109.0435 174.0714 273.1753
МЗ	N-dealkylation (sec- butyl) + Hydroxylation	4.18	$C_{17}H_{23}FN_2O_2$	307.1824	2.6	57.0685 109.0456 190.0641 289.1688

— FORENSIC SCIENCE PROGRAM —

Results

ID	Biotransformation	RT (min)	Formula	[M+H]+	Error (ppm)	Product Ions
M4	N,N-didealkylation (both sec-butyls) + Hydroxylation	3.39	$C_{13}H_{15}FN_2O_2$	251.1193	1.1	109.0434 190.0640
М5	Hydroxylation	5.81	$C_{21}H_{31}FN_2O_2$	363.2444	0.6	109.0447 142.1586 190.0669
М6	Di-hydroxylation	5.29	$C_{21}H_{31}FN_2O_3$	379.2387	-0.72	109.0450 100.0704 156.1384 190.0663
M7	N-dealkylation (sec- butyl) + Di- hydroxylation	3.67 4.12	$C_{17}H_{23}FN_2O_3$	323.1765	0.03	109.0444 190.0699 249.1046
ARCADIA UNIVERSITY						Cfsre Redefining Excellen

Conclusions

© Arcadia University. All Rights Reserved.

- 7 potential metabolites of 2F-Viminol identified
 - Main biotransformation pathways: hydroxylation and Ndealkylation
- Hydroxylation and N-dealkylation are commonly seen as metabolic pathways in opioids
 - N-dealkylation of fentanyl \rightarrow norfentanyl
 - Hydroxylation of brorphine

in Forensic Science

Future Work

© Arcadia University. All Rights Reserved.

• Other isomers

- Development of an extraction method
 - Determine stability of 2F-Viminol in biological specimens

26

- Authentic sample analysis
- Relatively quantify metabolites

2F-Viminol MS/MS Spectrum:

2F-Viminol Extracted from Blood:

Future Work

© Arcadia University. All Rights Reserved.

Acknowledgements

© Arcadia University. All Rights Reserved.

- Sara Walton and the staff at the CFSRE
- My class of 2021 cohort

Thank you for watching!

Any questions?

avelez@arcadia.edu