

Handling NPS Isomers – From Analytical Separation to Reporting

Society of Forensic Toxicologists (SOFT) Annual Meeting – Tuesday October 31, 2023 Workshop 11: Forensic Interpretation of Novel Psychoactive Substances in Challenging Cases

Melissa F. Fogarty, Sara E. Walton, Alex J. Krotulski* – Center for Forensic Science Research and Education (CFSRE)

INTRODUCTION

Center for Forensic Science Research & Education

- Associate Director
 - Toxicology & Chemistry
- Program Manager
 - NPS Discovery

Thomas Jefferson University

- Assistant Program Director
 - MS in Forensic Toxicology
- Faculty / Lecturer

DISCLOSURES

- I have no conflicts of interest to disclose.
- I am a scientist and employee of FRFF / CFSRE, a 501(c)(3) non-profit research and educational facility.
- CFSRE's NPS Discovery program is funded in part by the National Institute of Justice (NIJ), Office of Justice Programs (OJP), U.S. Department of Justice (DOJ).
 - Award Number: 15PNIJ-22-GG-04434-MUMU

DISCOVERY

 The opinions, findings, conclusions and/or recommendations expressed in this presentation are those of the author(s) and do not necessarily represent the official position or policies of the U.S. Department of Justice.

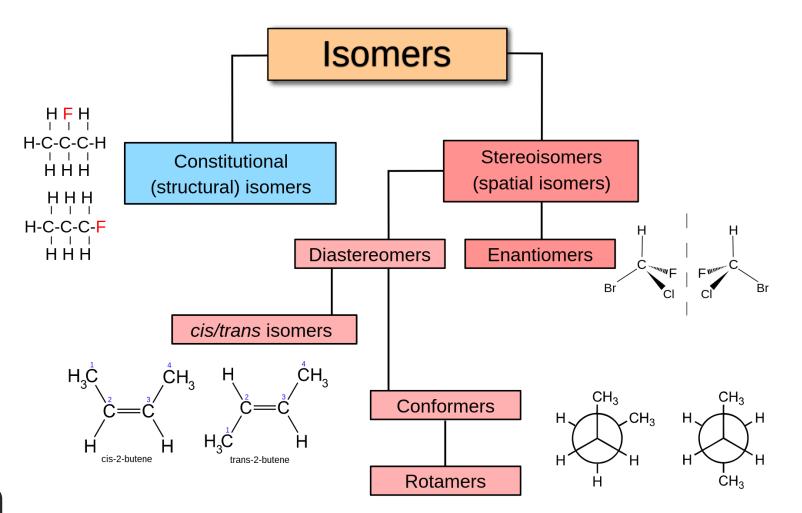
NIJ | National Institute of Justice

STRENGTHEN SCIENCE. ADVANCE JUSTICE.

PRESENTATION OUTLINE

- Types of Isomers
- Significance of Isomers
- Ways to Separate
- Examples

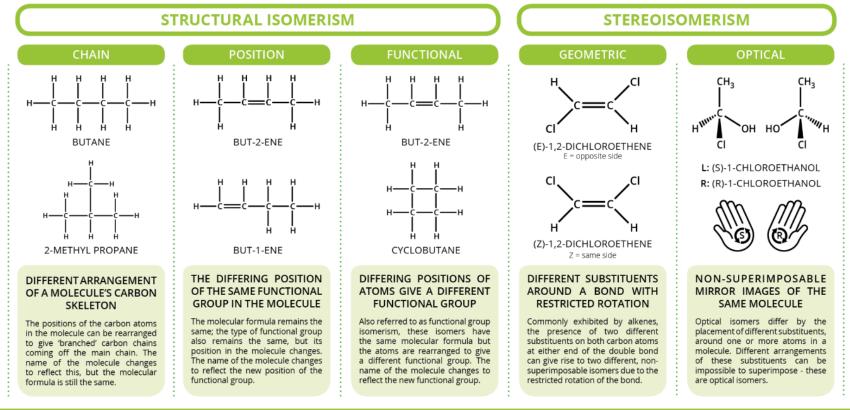
TYPES OF ISOMERS


Positional Isomers

- Movement of atoms or functional groups to other positions of the molecule
- More common***
- Generally, somewhat **easier** to differentiate during analysis

Stereoisomers

- Varying three-dimensional orientation / positioning
- Generally, much more difficult to differentiate during analysis


DSCOVERY

• TYPES OF ISOMERISM IN ORGANIC CHEMISTRY •

A GUIDE TO THE FIVE MAIN TYPES OF ISOMERISM THAT CAN BE EXHIBITED BY ORGANIC COMPOUNDS

AN ISOMER OF A MOLECULE IS A MOLECULE WITH THE **SAME MOLECULAR FORMULA** BUT A **DIFFERENT STRUCTURAL OR SPATIAL ARRANGEMENT** OF ATOMS. THIS VARIATION CAN LEAD TO A DIFFERENCE IN PHYSICAL OR CHEMICAL PROPERTIES.

COMPOUND INTEREST 2014 - WWW.COMPOUNDCHEM.COM

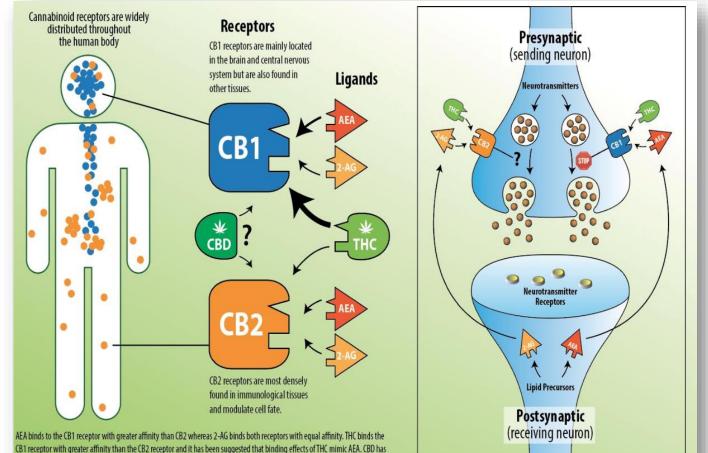
IPS DISCOVERY

Ci

SHARED UNDER A CREATIVE COMMONS ATTRIBUTION-NONCOMMERCIAL-NODERIVATIVES 4.0 INTERNATIONAL LICENCE

SIGNIFICANCE OF ISOMERS

Pharmacology


- Activity
- Potency

- Receptor System

- E.g., cannabinoid CB1 vs. CB2
- Agonist (full vs. partial)
- Antagonist

– Metabolism

- Sites of biotransformation
- Location of functional groups

low affinity for both receptors but interacts at low concentrations. It has been proposed that binding effects of CBD are mimetic to 2-AG.

SIGNIFICANCE OF ISOMERS

NPS DISCOVERY

Pharmacology

– Activity

– Potency

Legal Status

C cfsre

- Explicit Language
- Isomer / Analogue Laws
- o-FF Schedule I
- m-FF Not Scheduled
- p-FF Schedule I

SUBSTANCE	CSCN	CSA SCH	NARC	OTHER NAMES
Alpha-methylfentanyl	9814	I	Y	China White, fentanyl
Alpha-methylthiofentanyl	9832	I	Y	China White, fentanyl
Alpha-methyltryptamine	7432	I	N	AMT (Positional Isomer: N-Methyltryptamine)
Alphaprodine	9010	П	Y	Nisentil
alpha-pyrrolidinobutiophenone (α-PBP)	7546	I	Ν	1-phenyl-2-(pyrrolidin-1-yl)butan-1-one)
alpha-pyrrolidinoheptaphenone (PV8)	7548	I	Ν	PV8; 1-phenyl-2-(pyrrolidin-1-yl)heptan-1-one)
alpha-pyrrolidinohexanophenone (α-PHP)	7544	I	Ν	$\alpha\text{-PHP};$ $\alpha\text{-pyrrolidinohexanophenone};$ 1-phenyl-2- (pyrrolidin-1-yl)hexan-1-one)
alpha-pyrrolidinopentiophenone (α-PVP)	7545	I	Ν	α-pyrrolidinovalerophenone, 1-phenyl-2- (pyrrolidin-1- yl)pentan-1-one)
				(Positional Isomers: 4-methyl-α- pyrrolidinobutiophenone (4-MePBP), 1-phenyl-2- (piperidin-1-yl)butan-1-one)
Para-chloroisobutyryl fentanyl	9826	I	Y	N-(4-chlorophenyl)-N-(1-phenethylpiperidin-4- yl)isobutyramide
Para-Fluoro furanyl fentanyl (N-(4-fluorophenyl)-N-(1- phenethylpiperidin-4-yl)furan-2-carboxamide)	9854	I	Y	
Para-fluorobutyryl fentanyl	9823	I	Y	N-(4-fluorophenyl)-N-(1-phenethylpiperidin-4- yl)butyramide
Para-Fluorofentanyl	9812	I	Y	China White, fentanyl

SIGNIFICANCE OF ISOMERS

Pharmacology

- Activity
- Potency
- Legal Status
 - Explicit Language
 - Isomer / Analogue Laws

Downstream Impacts

- Public health \rightarrow CDC death certificate data
- Public safety \rightarrow DEA drug scheduling efforts

PS DISCOVERY

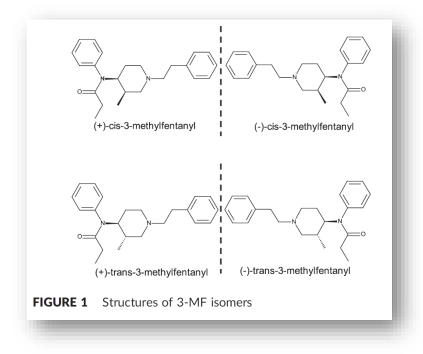
		YYYY	2022	Totals
INFLIS I	Public DQS	PERIOD	2022	
BASE_DESCRIPTION	DRUG_CATEGORY_DESCRIPTION			
5F-EMB-PICA	Synthetic Cannabinoids		15	15
5F-MDMB-PICA Synthetic Cannabinoids		97	97	
Fluoro-MDMB-PICA	Synthetic Cannabinoids		32	32
		Totals	144	144

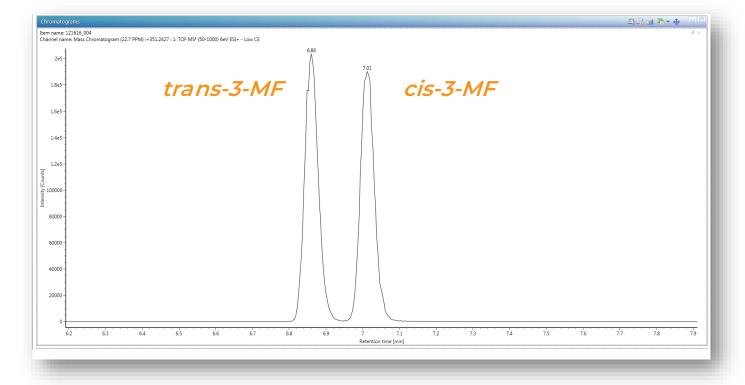
Synthetic Cannabinoid Reports	Number	Percent	
MDMB-4en-PINACA	4,521	30.19%	
5F-MDMB-PICA	2,888	19.28%	
Fluoro-MDMB-PICA	1,466	9.79%	
4F-MDMB-BUTINACA	1,010	6.74%	
Fluoro-MDMB-BUTINACA	283	1.89%	
Fluoro-EMB-PICA	263	1.76%	
5F-ADB	218	1.46%	
ADB-BUTINACA	210	1.40%	
4F-MDMB-BUTICA	210	1.40%	
5F-EMB-PICA	195	1.30%	
5F-EDMB-PINACA	121	0.81%	
Fluoro-MDMB-BUTICA	118	0.79%	
FUB-AMB	116	0.77%	
FUB-144	107	0.72%	
5F-CUMYL-PINACA	74	0.50%	
Other synthetic cannabinoids	3,176 21.2		
Total Synthetic Cannabinoid Reports ²	14,978	100.00%	
Total Drug Reports	1,283,971		

WAYS TO DIFFERENTIATE

Chromatography

- Gas Chromatography (GC)
- Liquid Chromatography (LC)
- Mass Spectrometry (MS)
 - Single Dimensional vs. Multi-Dimensional
 - High Resolution (HRMS)
- Complementary Techniques
 - Infrared Spectroscopy (IR)
 - Nuclear Magnetic Resonance (NMR)
 - Others



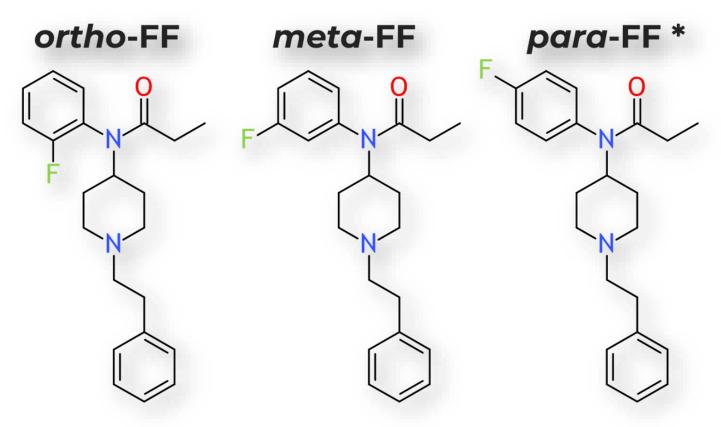

3-METHYL FENTANYL

- Two diastereomers → cis-3-methyl fentanyl and trans-3-methyl fentanyl
- Potency -> cis-3-MF is ~8x greater than fentanyl and trans-3-MF similar to fentanyl

sre

VPS DISCOVERY

Fogarty et al. (2018) <u>https://doi.org/10.1002/dta.2414</u>



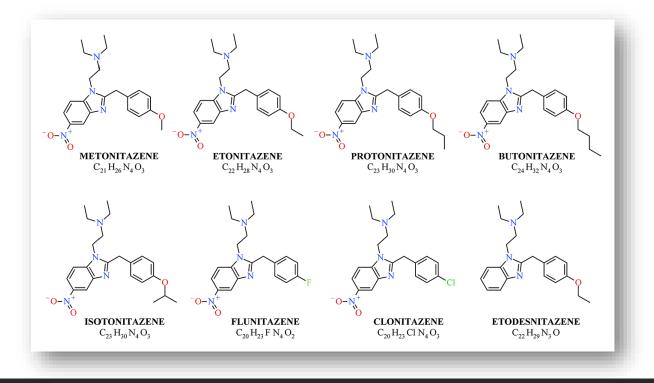
FLUOROFENTANYL (FF) ISOMERS

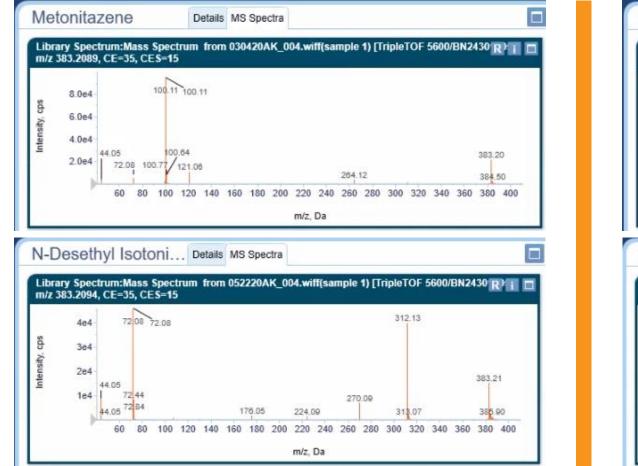
- "Fluorofentanyl" can exist in many forms but substitution on the aniline ring is most common
 - ortho-Fluorofentanyl
 - meta-Fluorofentanyl
 - para-Fluorofentanyl
- o-FF and p-FF are Schedule I
- Reported potencies (comp. to fent.):

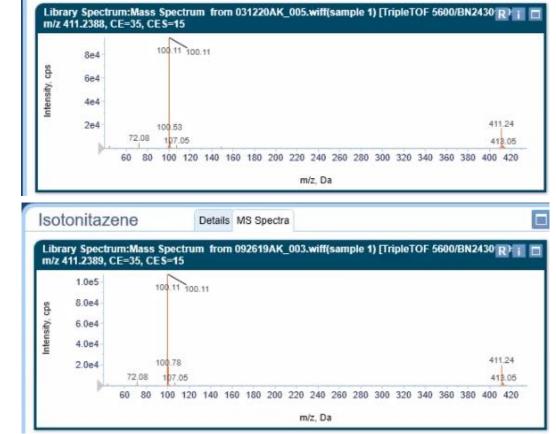
S DISCOVERY

- o-FF \rightarrow approx. 4x more potent
- m-FF \rightarrow approx. 6x less potent
- p-FF \rightarrow approx. 3x less potent

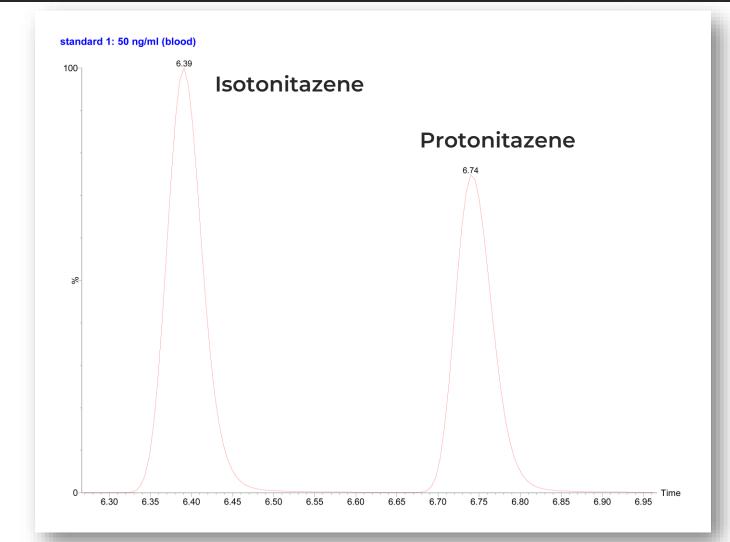
PARA-FF VS. ORTHO-FF CHROMATOGRAPHY


CISIC ONPS DISCOVERY


NITAZENE ANALOGUES


- Like all drug analogue series, there are various isomer pairs (+) that exist (or could exist)
 - Some are distinguishable by mass spectrometry alone
 - Some are identical by mass spectrometry but distinguishable by chromatography
 - Lack of separation/differentiation could lead to data issues or anomalies

NITAZENE ANALOGUES

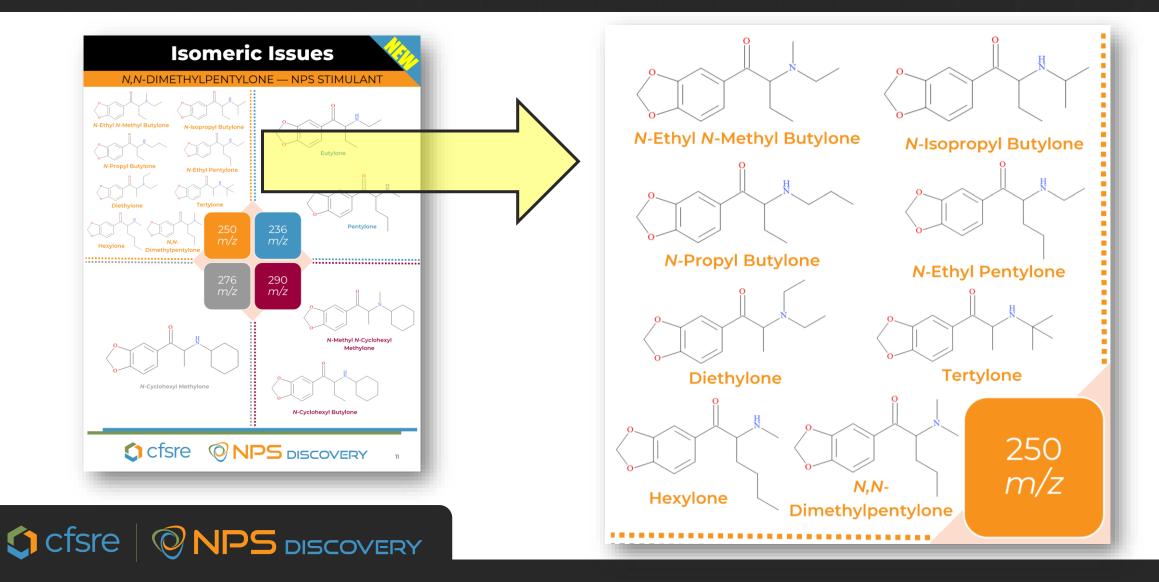


Details MS Spectra

Protonitazene

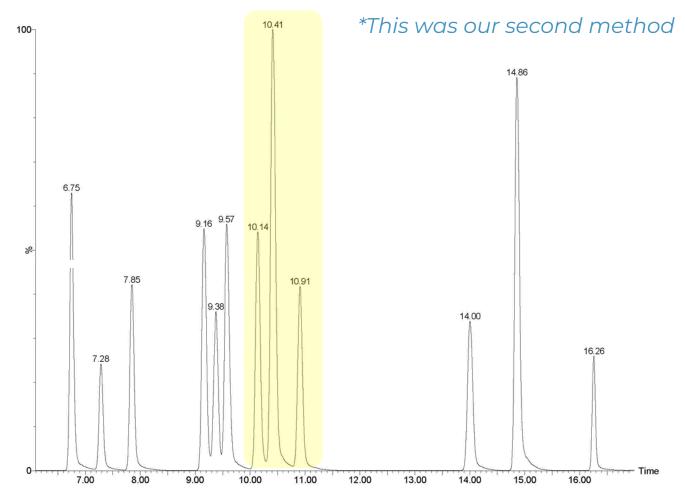
NITAZENE ANALOGUES

Cfsre 0 NPS discovery



N,N-DIMETHYLPENTLYONE

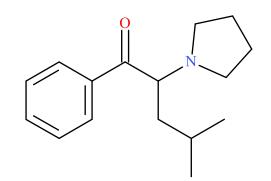
- Like all drug analogue series, there are various isomer pairs (+) that exist (or could exist)
 - Some are distinguishable by **mass spectrometry** alone
 - Some are identical by mass spectrometry but distinguishable by **chromatography**
 - Lack of separation/differentiation could lead to data issues or anomalies

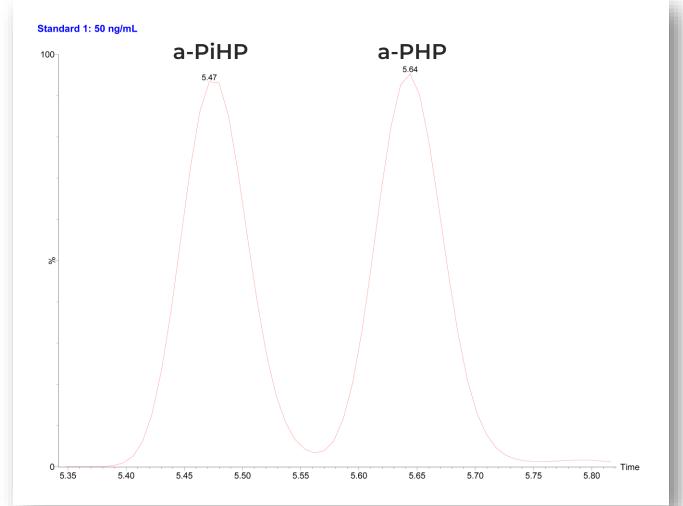


"-YLONE" M/Z 250 ISOMERS

N,N-DIMETHYLPENTLYONE

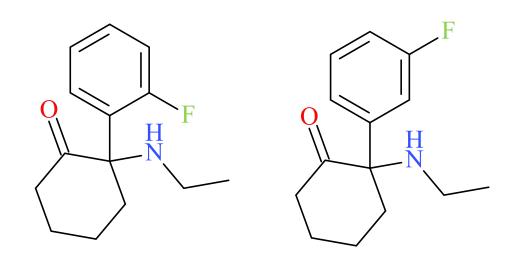
- Some of the m/z 250s are distinguishable by MS alone
- Chromatographic separation might be required
 - Not necessarily for identification but for confirmation and quantitation when multiple isomers might be present
 - 10.14 min N-Propyl Butylone
 - 10.41 min *N,N*-Dimethylpentylone
 - 10.91 min N-Ethyl Pentylone

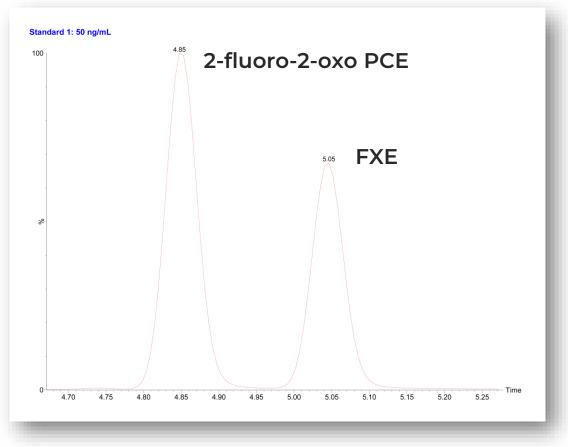

Publication pending



ALPHA-PHP VS. ALPHA-PIHP

- Not distinguishable by MS data
- A retention time shift (compared to standards) could indicate that a new isomer is appearing
- Split / co-eluting peaks could affect testing and reporting

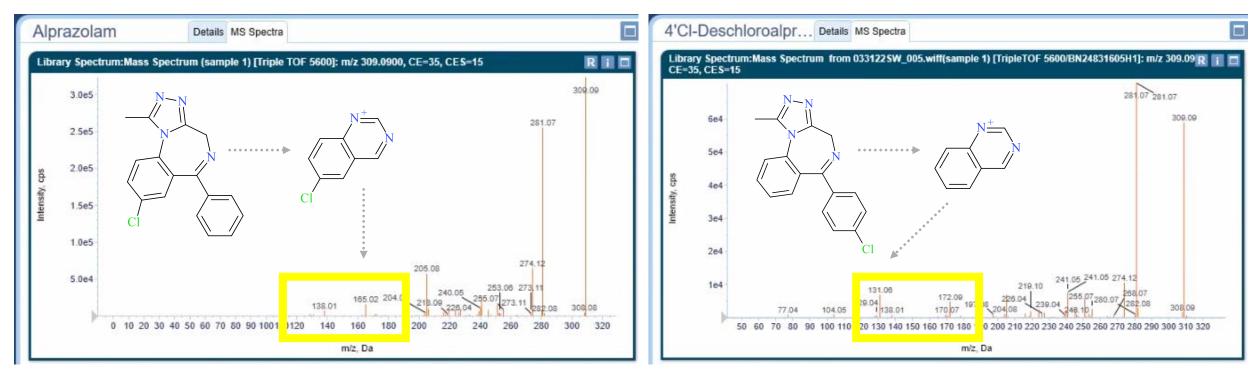




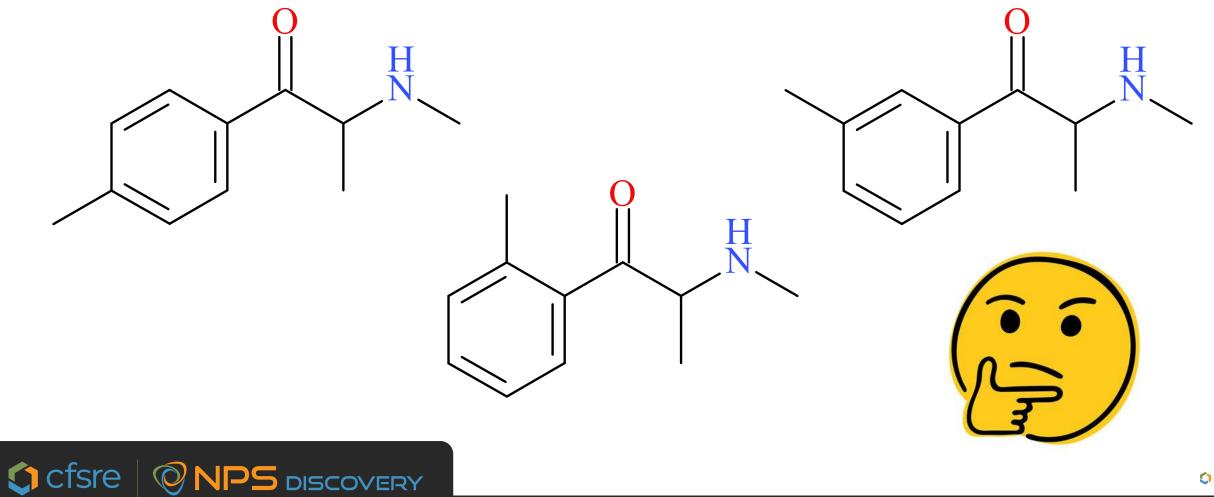
FLUOROEXETAMINE (FXE)

- Drug exists in two isomeric forms: 2-fluoro-2-oxo PCE and 3-fluoro-2-oxo PCE (FXE)
- Two isomers looks identical by MS
- Does differentiation matter for a tox case???
 - Consistency with crime lab

SYNTHETIC CANNABINOIDS



ALPRAZOLAM VS 4'CL-DESCHLOROALPRAZOLAM


- The two isomer <u>can</u> be differentiated by MS data if intensity is high enough
- Alprazolam positive screens but failing confirm criteria

METHYLMETHCATHINONE

DISCUSSION & CONCLUSIONS

- There is no "one-size-fits-all" solution to NPS isomers
 - The tools exist but it's a balance of time and resources
- Absolute determination can be significant
- Isomer differentiation can influence interpretation (e.g., potency) and expert opinions (e.g., legal status)
- Communicate and collaborate (when possible)

- AK's Opinion: Reporting unspecified isomer is still better than not reporting the drug at all...
 - The key is reporting properly

To **distinguish** or **not distinguish**, that is the **question**. -Shakespeare (probably)

ACKNOWLEDGEMENTS

- CFSRE Team
 - Barry Logan
 - Sara Walton
 - Josh DeBord
 - Mandi Mohr
 - Melissa Fogarty
 - Alyssa Reyes
 - Brianna Stang
 - Alexis Quinter
 - Max Denn
 - Many others!

- NMS Labs
 - Donna Papsun
- Funding Agencies
 - NIJ
- Collaborators & Partners
 - Forensic
 - Clinical
 - Medical Examiners
 - Coroners
 - Crime Labs
 - Etc.

Cfsre NPS discovery

THANK YOU! QUESTIONS?

Alex J. Krotulski, Ph.D. Associate Director – CFSRE Program Manager – NPS Discovery alex.krotulski@cfsre.org

