

The Development and Validation of a Quantitative Method for the Analysis of Fentanyl Containing "Dope" Samples

American Academy of Forensic Science; Orlando, FL; February 16, 2023

Joshua S. DeBord, PhD¹; Jennifer Shinefeld, MS²; Barry K. Logan, PhD¹; Alex J. Krotulski, PhD¹

¹Center for Forensic Science Research & Education (CFSRE)

²Philadelphia Department of Public Health

DISCLOSURE & ACKNOWLEDGEMENTS

- I am a paid employee of FRFF / CFSRE, a 501(c)(3) non-profit research and educational facility.
- I have no conflicts of interest in this presentation
- CFSRE / NPS Discovery gratefully acknowledges the support of the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice
- This work is funded by the Centers for Disease Control and Prevention (CDC) through an Overdose Data to Action grant awarded to the city of Philadelphia.
- The opinions, findings, conclusions, and/or recommendations expressed in this
 publication are those of the authors and do not necessarily reflect those of NIJ, the
 CDC or other federal, state, local, or private agencies.

JOSHUA DEBORD

- Husband and dad
- Senior Scientist at CFSRE, outside of Philadelphia, PA
- PhD Chemistry; FIU Miami, FL
- Background in analytical chemistry
- Research interests in method development, data analysis and process improvement
- NPS Discovery
 - HRMS and HRMS-MS development
 - Drug Checking/Surveillance

OUTLINE

- Method development
 - Background on project
 - Procedures
- Method Validation
 - Design
 - Results
 - Summary
 - Limitations
- Results of Sample Analysis
- Conclusions

PROJECT BACKGROUND

- CFSRE performs drug analysis for PDPH for surveillance of existing and emerging public health threats in the drug supply.
- Previously an estimation of relative abundance was performed using relative response ratios
 - Useful, but not ideal
 - Previously no attempt was made to correct for sampling variability
- Without at least one common quantitative measurement, comparing potency is not possible
- Quant panel was designed from our experience with the analysis of Philly's drug samples (ongoing since 2020).

METHOD DEVELOPMENT

- Work with Drug checking screening workflow:
 - Screen by GC-MS
 - Confirm by LC-QToF-MS

- Purpose: to quantify fentanyl in a variety of drug types
- Method specifications:
 - Target compounds:
 - Methamphetamine, Lidocaine, Levamisole, Xylazine, Cocaine, 4-ANPP, para-Fluorofentanyl, & Fentanyl
 - w/ Internal standard
 - Target quantitative range 100% 1%, lower if possible
 - Minimal sample preparation
 - Must use current GC-MS hardware and chromatographic parameters in use for screen

SAMPLE PREPARATION PROCEDURES

- Weigh approximately 3 mg of sample to a test tube
- Suspend sample in 2mL methanol, vortex thoroughly
- Dilute as needed with methanol and transfer a final volume of 500 µL
- Add 200 μL internal standard (20 μg/mL N-propyl-amphetamine)
- Extract with 0.75 mL of 0.1 N NaOH and 0.5 mL CHCl₃.
- Basic compounds extracted to organic phase (bottom layer)

INTEGRATION WITH CURRENT INSTRUMENTAL METHODS

- The following parameters were used, but were not optimized for this method:
- Instrument: Agilent 6890 GC and Agilent 5975 MS
- Column: 12m Agilent DB-1, 0.2mm diameter, 0.33µm film
- MS parameters: Full scan, 40-550 amu; 0.8 min solvent delay
- GC parameters: 50°C 340°C, at 30°C/min, held for 2.33 min
- Inlet parameters: 1 μL, splitless

METHOD VALIDATION

- Linearity assessed different calibration models over 5 days
- Accuracy checked with CRM standards at concentration of 100µg/mL and 10µg/mL
- Precision intra-day and inter-day precision were calculated
- Dilution dilutions up to 10x of original preparation were evaluated
- Matrix Effect : $\left(\frac{Fortified\ extracted\ blank\ sample}{Neat\ sample}\right) 1$
- Recovery: $\frac{Extracted\ sample}{Neat\ sample}$
- Process Efficiency: $\frac{Extracted\ sample}{Fortified\ extracted\ blank\ sample}$
- Post-extraction stability was checked but failed for cocaine.

WORKFLOW

 Begins in Agilent MassHunter 10 Quantitative Analysis

WORKFLOW

- Begins in Agilent MassHunter 10
 Quantitative Analysis
- Exported to .csv, cleaned, manipulated and joined by R

WORKFLOW

- Begins in Agilent MassHunter 10
 Quantitative Analysis
- Exported to .csv, cleaned, manipulated and joined by R
- Exported to .xlsx, data tabulated for review and sharing in Excel

LIMITATIONS

- Coelution of Levamisole and Xylazine which share some common ions
 - Negatively affected sensitivity for both compounds
 - Negatively affected accuracy at lower concentrations for both compounds
 - Levamisole, if present, could be approximated by a response ratio to something that is quantified instead
- This also negatively affected data review time
 - Response for levamisole when xylazine is at moderate or greater concentrations and like likewise for xylazine when levamisole is present
 - Easily reviewed and flagged by ion ratio filters but still required a manual review.
- Our balance capabilities could be [will be] improved

RESULTS OF METHOD VALIDATION

Validated parameters for compound identification.										
Compound	RT (min)	Quant m/z	Qual 1 ion	Ratio 1 ±20%	Qual 2 ion	Ratio 2 ±30%*				
Methamphetamine	2.45	91.1	65.1	52.3%	134.1	22.0%				
N-Propylamphetamine	3.11	86.1	65.1	7.5%	91.1	28.8%				
Lidocaine	5.27	86.1	58.1	8.8%	120.1	4.0%*				
Levamisole	5.49	101	73.1	101.7%	121.0	81.6%				
Xylazine	5.55	177	130.1	97.3%	145.1	103.3%				
Cocaine	6.3	303.2	94.1	137.0%	105.1	110.0%				
4-Anilino-N-Phenethylpiperidine	7.01	146.1	118.1	16.0%	189.2	87.0%				
Para-fluorofentanyl	7.62	263.2	164.1	38.0%	207.1	25.0%				
Fentanyl	7.71	245.2	146.2	48.0%	189.2	31.0%				

RESULTS OF METHOD VALIDATION

Validatated quantitative parameters

	Calibration							
	Range				Admin LOD		Average of y-	Calculated
Compound	(μg/mL)	Model	Weighting	LOQ (µg/mL)	(μg/mL)	R ²	intercept	LOD (μg/mL
Methamphetamine	4 - 400	Quadratic	1/x	4.0	4.0	0.999	-0.56	1.72
Lidocaine	4 - 150	Quadratic	1/x	4.0	4.0	0.999	-1.35	1.77
Levamisole	4 - 150	Quadratic	1/x	4.0	1.5	0.999	-0.98	1.22
Xylazine	15 - 400	Quadratic	1/x	15.0	4.0	0.999	-0.46	2.63
Cocaine	8 - 400	Quadratic	1/x	8.0	8.0	0.999	0.16	4.6
4-Anilino-N-Phenethylpiperidine	4 - 150	Quadratic	1/x	4.0	4.0	0.999	-0.91	2.28
Para-fluorofentanyl	4 - 150	Quadratic	1/x	4.0	4.0	0.999	-1.39	2.77
Fentanyl	4 - 150	Quadratic	1/x	4.0	4.0	0.999	-1.10	2.1

RESULTS OF METHOD VALIDATION

Validaiton Summary										
	Accura	acy (%)	Precisi	ion (%)	Process Ef	ficiency (%)	Matrix Effect (%)		Recovery (%)	
Compound	High	Low	High	Low	High	Low	High	Low	High	Low
Methamphetamine	3.3	7.6	7.9	7.3	96	108	3	4	98	112
Lidocaine	1.5	9.2	4.5	4.5	96	100	2	-3	98	97
Levamisole	1.1	16.4	6.7	16.3	92	95	10	18	101	112
Xylazine	5.0	3.9	5.5	6.5	94	98	1	-1	96	98
Cocaine	3.0	11.4	10.2	13.8	42	41	4	0	43	41
4-Anilino-N-Phenethylpiperidine	0.5	7.4	5.4	7.2	96	98	1	-2	97	96
Para-fluorofentanyl	0.7	9.3	8.0	8.8	95	97	4	1	98	98
Fentanyl	2.0	4.5	7.5	8.8	94	97	4	1	98	98

POTENCY EVALUATION POSSIBLE IN "REAL-TIME"

- Without a quantitative anchor for ground truth, potency comparisons are lacking.
- Quantitative measurement with this method is reasonably easy allowing for fast turnaround.
- Suitable for a variety of drug types
- Using the quantitative results of fentanyl and fluorofentanyl
 - Approximate relative abundance of adulterants and impurities
 - Approximate relative abundance of concurrently observed NPS, such as nitazene analogs
 - Provide a public health assessment on relative opioid potencies and compare between samples.
 - Begin to explain why particular samples lead to adverse drug events.

Compound distributions for cocaine (n=66) and fentanyl (n=241) samples

Compound distributions for cocaine (n=66) and fentanyl (n=241) samples

Compound	N	Mean	Standard Deviation
Fentanyl	7	2.93%	2.95%
Xylazine	6	10.37%	8.78%
Fluorofentanyl	1	1.53%	
4-ANPP	4	0.69%	0.31%
Methamphetamine	3	6.31%	4.51%
Cocaine	66	45.44%	25.45%
Lidocaine	31	14.51%	12.60%
Levamisole	15	9.93%	10.09%

Compound	N	Mean	Standard Deviation
Fentanyl	241	13.06%	8.99%
Xylazine	229	35.76%	16.71%
Fluorofentanyl	47	2.38%	3.61%
4-ANPP	229	2.31%	2.16%
Methamphetamine	1	2.87%	
Cocaine	2	3.21%	3.92%
Lidocaine	29	2.70%	3.85%
Levamisole	5	1.64%	1.15%

Descriptive statistics on quantitative values (mass percentage) of samples with predominant cocaine (top) and of samples with predominant fentanyl (bottom).

			Standard	Lower 95% CI of	Upper 95% CI of		1st Quartile	:	3rd Quartile	
Compound	N	Mean	Deviation	Mean	Mean	Minimum	(Q1)	Median	(Q3)	Maximum
Fentanyl	7	2.93%	2.95%	0.20%	5.66%	0.38%	0.41%	1.47%	4.70%	8.43%
Xylazine	6	10.37%	8.78%	1.15%	19.58%	0.77%	2.82%	8.42%	19.88%	21.88%
Fluorofentanyl	1	1.53%				1.53%	1.53%	1.53%	1.53%	1.53%
4-ANPP	4	0.69%	0.31%	0.20%	1.19%	0.43%	0.51%	0.60%	0.87%	1.15%
Methamphetamine	3	6.31%	4.51%	-4.88%	17.51%	2.13%	2.13%	5.73%	11.09%	11.09%
Cocaine	66	45.44%	25.45%	39.18%	51.70%	6.52%	25.93%	40.21%	61.14%	99.00%
Lidocaine	31	14.51%	12.60%	9.89%	19.14%	0.89%	8.09%	10.03%	16.18%	54.01%
Levamisole	15	9.93%	10.09%	4.34%	15.52%	1.34%	3.27%	9.98%	11.06%	42.18%

			Standard	Lower 95% CI of	Upper 95% CI of		1st Quartile		3rd Quartile	
Compound	N	Mean	Deviation	Mean	Mean	Minimum	(Q1)	Median	(Q3)	Maximum
Fentanyl	241	13.06%	8.99%	11.92%	14.20%	1.09%	6.77%	11 21%	17 51%	53.08%
Xylazine	229	35.76%	16.71%	33.59%	37.94%	0.24%	24.53%	37.48%	46.52%	77.44%
Fluorofentanyl	47	2.38%	3.61%	1.32%	3.44%	0.16%	0.51%	1.1/%	3.28%	19.21%
4-ANPP	229	2.31%	2.16%	2.03%	2.59%	0.10%	0.98%	1.72%	2.84%	12.33%
Methamphetamine	e 1	2.87%				2.87%	2.87%	2.87%	2.87%	2.87%
Cocaine	2	3.21%	3.92%	-32.02%	38.43%	0.43%	0.43%	3.21%	5.98%	5.98%
Lidocaine	29	2.70%	3.85%	1.23%	4.16%	0.18%	0.43%	1.03%	2.54%	14.30%
Levamisole	5	1.64%	1.15%	0.22%	3.07%	0.31%	1.00%	1.33%	2.35%	3.22%

General yearly observations in Philly fentanyl samples for 2022

CONCLUSIONS

- A simple extraction and analytical method using common instrumentation to quantify fentanyl and related compounds in common drug types.
- Ability to determine/compare potency in street drugs in near real-time is vital to harm reduction, public health advancement, and informing policy
- We have begun to inform public health partners on their relative potencies of opioid samples within two weeks of collection.
- In Philadelphia, among the samples we've tested:
 - Some batches of fentanyl have shown a tendency to decrease in fentanyl concentration overtime, but further studies are needed
 - We have observed xylazine to have increased in concentration over the past year approximately 10% to a new average mass % of 40. Xylazine is still ubiquitous and is detected in ~95% of powder fentanyl samples from PDPH.
 - Fentanyl average concentration has not changed and is still an average of ~13%

Thank you! Questions?

joshua.debord@cfsre.org